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Abstract. We study the scaling and correlation-fluctuation properties for the spectra and 
wavefunctions ol a simple one-dimensional quasi-periodic system that displays an Anderson 
metal-insulator transition. Thissystemanditsextensionsare modelsforstudyinglocalization 
phenomena. and their usefulness for the description of the Anderson transition as well as 
insulating and metallicphases in disordered systemsisexploited. We present numericalwork 
on the critical behaviour of the spectrum and wavefunctions, which display multifractal 
fluctuations. Appropriate probability densities are studied, and it is demonstrated that: (i) 
the subband energy width statistics. which may express spectral correlations. is consistent 
with linear level repulsion at the critical point and a Poisson distribution in the insulating 
repime; and (ii) the critical wavefunction probability amplitude distributions approach a 
universal function as the system size increases. I t  is concluded that certain critical properties 
of quasi-periodic models are similar to what is expected lor electronic states in weakly 
disordered metals. and othersshow a strikinesimilaritv to mobilitv edee behaviour in three - , .  
dimensions. 

1. Introduction 

New features have emerged in the non-interacting electron band theory for two-dimen- 
sional systems under a sufficiently strong magnetic field and a periodic potential [I] .  
This behaviour is linked with the quantum Hall effect [2], which, together with the 
experimental design of new structures with a periodic modulation incommensurate with 
the underlying lattice and the experimental discovery of the quasi-crystalline phase in 
metallic alloys [3], initiated the study of quasi-periodic systems. The electron properties 
and lattice dynamics of such modulated structures and quasi-crystals are believed to be 
intermediate between periodic and random. The pertinent theoretical question concerns 
the nature of their electron states in connection with the phenomenon of Anderson 
localization and the associated metal-insulator transition, which are common in random 
systems [4]. In this context Aubrey and Andre [5] introduced and studied a one- 
dimensional equation, better known as the discrete Harper’s equation, originally used 
to describe the quantum theory of an electron confined in a plane with a periodic 
potential in the plane anda uniform magnetic field perpendicular to the plane. Ofcourse, 
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disordered electronic systems always show localization in one dimension and the quasi- 
periodic model, even if not disordered, might be expected to conform to this rule. 
Actually, the model of [SI and its extensions [6] mimic the real three-dimensional 
situation since they can show localized, extendedaswellascritical states. From aduality 
property it can be shown that an Anderson transition with a rich complex scaling 
behaviour 17-91 occurs for the one-dimensional self-dual system [5] at a critical value for 
the strength of the incommensurate potential, corresponding precisely to the magnetic 
field problem. This metal-insulator transition is thought to be rather simpler than that 
in the,presence of a random potential [4]. The reason is that in quasi-periodic models 
when approaching the critical point from the metallic phase we do not encounter the 
quantum coherence phenomena that are known to exist in the diffusive regime of 
disordered metals. This implies that their extended statesare not chaoticasindisordered 
metals but analytic, carrying a finite momentumcorresponding to ballistic transport with 
infinite elastic mean free path. The Anderson transition from extended to localized 
states in quasi-periodic systems is regarded as due to breaking of analyticity [SI. 

In disordered systems the Anderson transition is defined at the point in the energy 
spectrum, known as the mobility edge, where the averaged wavefunction amplitude 
changes sharply from being constant in the metal to an exponential decaying function 
for the insulator. In the metallic phase close to the mobility edge the wavefunction 
amplitude fluctuations are large and the states are chaotic. Recently [1@12], a lot of 
attention has been focused on spectral correlation properties in this regime related to 
the physics of mesoscopic systems. As we approach even closer to the mobility edge the 
fluctuations increase dramatically and become very large indeed for the insulator. On 
the other hand, the averaged value of the spectral density clearly does not carry any 
information on the transition. But again its fluctuations, i.e. the higher statistical 
moments of the density of states, 'feel' the transition [IO]. The nature of the spectrum 
changes drastically when crossing the mobility edge from being smooth and rigid in the 
metallic phase to a highly fluctuatingspectrum for the insulatingphase. The difference 
is assigned to the fact that the chaotic extended states overlap significantly, causing 
repulsion between the energy levels and a correlated spectrum. On the other hand, 
localized states that are close in energy are expected to be spatially largely separated so 
that the corresponding spectrum becomes uncorrelated. This picture for the spectral 
fluctuations is confirmed by eigenvalue statistical studies of random tight-binding matrix 
ensembles appropriate to describe disordered electronic systems [1&12]. In the limit of 
very strong diagonal disorder the roleofthe off-diagonal matrix elements diminishesand 
the energy levels are essentially similar to the input random diagonal matrix elements, 
leading to Poisson statistics. When the disorder decreases, the off-diagonal matrix 
elements instead contribute significantly and the eigenvalues begin to correlate. repelling 
their closest neighbours. This change of behaviour may also be seen by varying the 
hopping range in statistical random matrix ensembles [13]. For long-range hopping the 
Wigner-Dyson Gaussian ensembles [I41 (or equivalently the infinite-dimensional tight- 
binding matrix ensembles) become appropriate, producing level repulsion and spectral 
rigidity. By shortening the matrix band range, a crossover to the uncorrelated spectrum 
occurs. The presence of the spectral correlations and of the corresponding wavefunction 
amplitude fluctuations should somehow be responsible for the fluctuations of a quantity 
thatisofcentralinterest inquantumtransport, namely theconductance G. It has become 
clear over recent years that the full distribution function of P(G), which incorporates all 
its fluctuations, must be studied [IS] rather than just its averaged value (G). It is well 
known that (G) serves as the unique relevant variable in the one-parameter scaling 
theory of the Anderson transition [16]. 

S N Evangelou and E N Economou 
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In quasi-periodic systems the critical point is characterized by exotic scaling effects, 
which allow a multifracial description [17] for both the spectra [7] and the wavefunctions 
[8 ,9 ] .  It isstill not clear to what extent these results are also relevant for understanding 
the Anderson transition in disordered systems. However, first Wegner [IS] pointed out 
that such anomalous scaling for averaged moments of local quantities is not unlikely to 
occur in disordered systems. He computed the multifractal scaling exponents for the 
critical wavefunction amplitude probability distributions in d = 2 + E dimensions, and 
rather consistent numerical results were later shown in three dimensions [19]. For the 
quasi-periodic model, quantum-dynamic diffusion studies [20], which are intimately 
related to the spectral properties, have also been performed. It was found that the 
asymptotic long-time evolution of an electronic wavepacket put on a single site at time 
t = 0 has a mean-square-root spatial extend described at the critical point by the power 
law 

( ( h x ) 2 ) ” 2  CT fn< as t+ 30 (1) 

where theexponent a;isalittle less than 1/2. Equation (1)describesadynamicevolution 
process close to  ordinary diffusion, which is commonly observed in the diffusive metallic 
regime of disordered metals in three dimensions. The result of equation (1) is not 
incompatible with what the electron ‘sees’ at long times. Depending on the original 
choice made at f = 0 it should reflect the scaling of the spectral density versus energy. 
We must use the fact that the underlying band structure is of the well known Cantor set 
type characterized by a continuous spectrum of multifractal dimensions ranging from 
D,, = amin = 0.421 to D- = a,,, = 0.547. while the most probable dimension is Do = 
1/2 [7]. Therefore, the exponent  with the given startingcondition should be equal to 
one of the fractal dimensions (Y, which corresponds to scaling near a specific energy. 
Below the critical point the asymptotic behaviour of  A AX)^)"^ as t-+ = is described by 
the trivial exponent (Y = 1, referring to ballistic electronic motion. In the insulating 
regime (Y = 0 and ((Ax)’)’/’ tends to a finite localization length asr+ 3 ~ .  Two important 
differences of the quasi-periodic model when compared to disordered systems have 
already been pointed out [20]: in the extended phase the electronic motion is always 
ballistic and the localized phase is characterized by long transient behaviour until the 
asymptotic localization length is reached. Both these features are usually not charac- 
teristic of real three-dimensional disordered systems. 

Although the quasi-periodic model has been extensively studied and certain anal- 
ogies have been implied in previous studies, it has not been seriously compared before 
with the real complicated problem of electrons in dirty systems. The purpose of this 
paper is to exploit further the model and to establish the essential connections between 
the two problems. We also report new results by focusing directly on the density-of- 
states correlations and the wavefunction amplitude fluctuations. In fact, in accord with 
the dynamic diffusion studies [20], we propose that the critical regime of the quasi- 
periodicmodelis indeedclose to being diffusive-like and one encountersspectraldensity 
fluctuation phenomena similar to the mesoscopic fluctuation phenomena expected in 
the quantumcoherent regimeofthree-dimensional disordered systems. But this doesnot 
hold for other properties, such as the wavefunction probability amplitude distributions, 
which seem to be exclusive to the mobility edge as we know it from studies in disordered 
systems. 

We present a complete study of a one-dimensional quasi-periodic system mainly at 
the mobility edge. Most solutions for this model can be obtained via numerical 
techniques, without muchdifficulty , since the dimensionality islow and true randomness 
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is absent. Our emphasis is focused on the following three questions. (i) What are the 
fluctuations of the density of states as reveaIed from the statistics of the energy level 
spacings and what are the wavefunction amplitude fluctuations at the critical point? (ii) 
What are the corresponding distributions away from criticality? (iii) What do we learn 
from the solutions of the quasi-periodic model that is relevant and useful in order to 
elucidate the difficult problem ofthecorrespondingbehaviour at the Anderson transition 
in higher-dimensional disordered systems? In order to achieve our purpose, i.e. clari- 
fying the previous questions, we exploit the multifractal scaling properties [9] for the 
fluctuating measures of the spectra and wavefunctions at the critical point. Our results 
also aim towards an interpretation of previously obtained data for the statistics of the 
densityofstatesat thecritical point [21-231andreveal the truenatureof the fluctuations. 

S N Euangelou and E N Economou 

2. The quasi-periodic model and the method of study 

We studied the so-called Harper's equation brought to notice in [5]. In one dimension 
it is described by a tight-binding finite-difference equation with a cosine modulation of 
strength I ,  incommensurate with the underlying lattice. The ratio of the modulation 
period to the lattice constant (a = 1) is expressed by an irrational number U ,  The linear 
chain is written as 

Y,,,, + Y,,-l + I. cos(2nun' + lp)Yv, = EY" (2) 
where E is the energy, Y,, is the wavefunction amplitude at the nth site and 'p is a phase 
factor. The case of U # 1 offers an interesting extension ofthe model, which is further 
discussed in section 4. For other extensions see [24]. The one-dimensional Fibonacci 
quasi-crystal [E,  261 also belongs to the same class of models at criticality. The well 
known duality argument of [ 5 ]  goes as follows: When U = 1 and A: = 2 ,  equation (2) is 
identical with itscorresponding Fourier transform and we expect that the localized states 
in real space will be extended states in k-space and vice versa. Using also an assumption 
that the domains of localized and extended states are separated by a single point leads 
to the conclusion that for all energies a transition should occur at the self-dual point A: = 
2. The nature of the spectrum similarly changes at 1. = 2. For small A ,  and almost every 
U and 'p. all states lie in smooth bands of finite measure. As A approaches 2, the total 
measure of the bands goes to zero and the spectrum is said to be singular continuous. In 
[7] it  was shown that the spectrum has an integrated density of states that is a Devil's 
staircase at the critical point (see figure 1) and multifractal. For values of A larger than 
2 the spectrum is point-like, corresponding to exponentially localized states. 

In order to achieve a numerical solution of equation (2) we consider systematic 
approximations of the irrational number U by a series of rational approximants obtained 
by truncating its continued fraction expansion. For well behaved quadratic irrationals, 
such as the inverse of the golden mean U:' = (vs -1)/2 or the silver mean 
U, = fi -1 ,  the series of approximants are particularly simple. For uG1 these are the 
rational numbers F,_,/F, = {1/2,2/3,3/5,5/8, . . .}, where F, is a Fibonacci number 
defined recursively from F-, = Fu = 1 and F. ,, = F, + F,- ,; and for us the sequence is 
{2/5, 5/12, 12/29, 29/70, 70/169, 1691408, 4081985, , , .}. For other irrationals the 
corresponding approximants may define irregular periodicities, which are not good 
for numerical studies. This is particularly distressing in view of encountering more 
complicated spectral hierarchies [I] than for 06' and us. At the nth level of approxi- 
mation, from the Bloch condition we have to solve an eigenvalue equation for each value 
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of the wavenumber k. From the periodic continuation of the lattice, a complex matrix 
of order N = F,, is defined, which is written as 

A exp(ik) 0 0 ... exp(-ik) 

exp(-ik) A cos(2nu”l) exp(ik) 0 ... 0 

0 exp(-ik) A cos(2nu”Z) exp(ik) ... 0 
0 0 exp(-ik) Acos(2xo”3) ... 0 

0 0 0 exp(-ik) ... 0 

I 
\exp(ik) o 0 0 ... A cos[2no”(N - 1)]/ 

(3) 
and is studied for Y = 1,2 ,3 .  

First, we focus our interest on the band structure of the model. From the eigen- 
solutions of equation (3) we find, as a function of k, N bands with widths Si (i = 1, 
2, . . . , N )  and N - 1 gaps of widths A+ N is our scaling length and the incommensurate 
limit is attained only when N +  m, The appropriate spectral density measure can be de- 
fined as the number of states contained in each band. We have also been interested in 
certain wavefunctions, which can be accurately computed from equation (3) for suc- 
cessive periodicities N .  At special energies, such as at the band centre or the band 
edges, this can be done very efficiently [9], so that their scaling and fluctuation proper- 
ties can be explored with a high degree of numerical accuracy. 

In the rest of the paper, we shall be concerned with the study of the distributions 
whose statistical moments give rise to the multifractal exponents at the mobility edge. 
The multifractal formalism describes globally the singular character of a probability 
measurep. This is a positive quantity, which can be the density of states or the wave- 
function amplitude, distributed on a set that defines the support of the measure. We 
may introduce a partitioning of the set, which consists of linear boxes of equal sizes I,, 
with a probability measure pi associated with each box. In order to obtain the scaling 
properties of the spectrum, p i  is defined as the number of states within an energy band 
of width li and for simplicity all bandwidths L‘; can be chosen to be equal. A more natural 
partitioning arises if the boxes are chosen to coincide with the sub-bands that sustain a 
non-zero measure p i ,  that is if ll = S,. In this case we have constantpi in every sub-band 
but a distribution of the bandwidths li. In order to study the scaling properties of the 
normalized wavefunction amplitude we partition the lattice into equal boxes and choose 
as the measurep, the squared wavefunction amplitude summed up on each box. Clearly, 
in this case we have, instead, a constant box size I, and a distribution for the p i .  

The computation of the scaling exponents is conveniently achieved via a statistical 
formalism. At the nth stage of approximation a partition function 

rn(q) = X p : p )  
i 

is introduced where the summation is defined on all non-empty boxes, i = 1,2 , .  . . , N .  
In the large-n limit the generalized dimensions (Renyi entropies) Dq = s(q)/(q - 1) are 
computed by requiring that rn(q) = 1. Via a Legendre transform the exponents D, can 
be cast into an upward convex curvef(w) characterizing the spectrum of singularities CY 

(or DJ. For q = 0, the partition function r(0) just counts the number of non-empty 
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FGure 1. The calculated integrated density of 
states function for Y = I ,  A = 2 computed for N = 
1597. 

IO' 10' io= 

Flgure 2. The arithmetic and geometric mean 
bandwidths ( S ( N ) )  (0) and (S (N) )G (+) as a func- 
tion of N for U = 1, A = 2 (see equations (7) and 
(8)). The geometric mean gapwidth ( A ( N ) ) ,  ( X )  
is also shown. The least-squares fits are the 
expressions described by equations (8) and (9). 
respectively. 

boxes and gives D,, which is the fractal dimension of the support of the measure. For 
the spectrum at the critical point Do = 1/2, and for the critical wavefunctions the 
corresponding Do = 1, since the wavefunctions have compact support, i.e. in this case 
Do equals the space dimension. The other dimensions D, explore different regions of 
energyandspacefor thespectrumand wavefunctions, respectively. D, isusuallyreferred 
to as the information dimension and D2 as the correlation dimension. For normalized 
wavefunctions D, refers to the scalingof the information entropy, defined by -Z ip i  Inp, 
and D, to the inverse participation ratio Tip?, often used to characterize localization 
[41. 

3. Scaling and fluctuation statistics of the eigensolutions 

3.1. For the energy spectrum 
The band structure for v = 1 and any U ,  A has originally been understood via simple 
empirical rules [l], subsequently analytically confirmed [27]. describing the hierarchical 
subdivision of the spectra. For U = U;' and U = U, each band is composed of two side 
sub-bands andone central sub-band, which follow roughly the same gap sequence as the 
full band itself. At the critical point (A = 2) of the self-dual model the spectrum becomes 
a self-similar Cantor set. The numerically computed critical integrated density of states 
is shown in figure 1. The density of states is known to define a multifractal measure 
characterized by a a-f(a) curve of scaling exponents [7]. 

Before we attempt to characterize the distributions of fluctuations at this point we 
may exploit the approximate hierarchical structure of the spectrum. We immediately 
notice the two dominant band gaps in figure 1, which repeat indefinitely, leading to the 
self-similar band structure. The reduction of the total mother band to two left and right 
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equalsub-bands plusasmallercentral bandisachieved by the ratiosa and b, respectively. 
We accurately compute the asymptotic ratios and the results are a = 1/7.182 and b = 
1/13.739, which may be compared with the perturbation theory estimates and the 

computations of [27]. Naturally the previous considerations from the simple three-scale 
Cantor set lead to a binomial multifractal formula for the corresponding bandwidth 
distribution. At the nth stage of this approximate hierarchical construction of the 
spectrum the total number of bands is N = 3" and (n  + 1) different band sizes exist. The 
occurrence probability for a given band size is, therefore, given by 

m =0 ,  I , .  . .,n (4) 

and the set may be generated via the partition function 

r,(q) = 2(1/3)Sa-'(q) + (1/3)9b-'(u), (5) 
In order to determine the exponents r(q) the equation TI(q) = 1 has to be solved. The 
corresponding n-f(a) spectra are obtained accordingly [17]. For the maximal and 
minimalscaling, corresponding to the mast rarefied (largest intervals S;) and the densest 
parts (the smallest S;) of the density, from equation (5) we obtain 

D-, = amax = In(l/3)/ln a = 0.557 

D,, = amin = ln(1/3)/ln b = 0.419 

( 6 4  

(66) 

respectively. These values compare reasonably well with the corresponding numerical 
estimates D-= = OS47 and D,, = 0.421, respectively [7]. For A < 2 we have 01 = 1 
with f = 1 and a. = 1/2 with f = 0 due to the one-dimensional square-root Van Hove 
singularities; while for A > 2 all the fractal measures are zero (n = 0). We obtain the 
result Do = 0.51 for the Hausdorff dimension concerning the spectral support, which 
agrees with the expected almost universal value [7,27] of Do = l/2. 

We now consider the corresponding statistical bandwidth and gapwidth distributions 
whose moments are responsible for the multifractal exponents of the density of states. 
It turns out that they cannot be understood as easily as the exponents themselves. For 
the successive approximants defining the periodicities described by the scale N we 
analysed numerically the distribution of the bandwidths S;(N) and the gapwidths A,(N) .  
The average bandwidth is found for A S 2 to scale (see figure 2) as 

( S ( N ) )  = AN-('t6) (7) 

where the exponent 6 is precisely zero for A < 2, 6 = 1 for A = 2 and (S(N)) decays 
exponentially with N for h > 2. From a least-squares fit of the data of figure 2 we find 
for the constantA = 4.65, in close agreement with thescalinglaw ofthe total bandwidth 
B ( N )  = N ( S ( N ) )  as considered in [28]. The exponent 6 = 1 at A = 2 is connected with 
the Cantor set fractal support of the densityof states by the relation Do = 1/(1 + 6) [25]. 
We have also computed the geometric mean of Si, which is found (see figure 2) to be 
very close to the arithmetic mean of equation (7) but with a slightly different constant 
A = 4.40, indicating that the distribution is not broad. The corresponding distribution 
of the gapwidths Ai is instead much broader. It is described by an inverse power-law- 
type function [21, 221. In this case we have computed a typical value defined by the 
geometric mean gapwidth ( A ( N ) ) G .  It is found (see figure 2) that forA s 2 it scales with 
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Nsimilarly to equation (7), that is 

S N Euangelou and E N Economou 

( A ( N ) ) G  = BN-"+" 

but with a new exponent 6' and a different constant B = 46.06 at A = 2. The cor- 
responding exponent 6' increases with A for A < 2 ,  becomes 6' = 6 = 1 for A = 2. For 
A > 2 (A(N))c decaysexponentially, slower than (S(N)). The widthsof the energy bands 
Si can be related to the shifts of the energy levels due to changes in the boundary 
conditions from periodic to antiperiodic [4]. The conductance C(N) in units of e2/h  can 
be empirically defined for the finite system 6 la Thouless from the density of allowed 
bands near the Fermi energy. Its averaged value should, therefore, be proportional to 
the total bandwidth B(N)  = N(S)N) ) .  In the delocalized regime ( A  < 2) i t  is finite and 
proportional to 2 1 A - 21, while in the localized regime ( A  > 2) it decays as exp(-N/E), 
where c i s  the appropriate localization length; exactly at the critical point ( A  = 2) from 
(7) it must decay as A,". The conductivityshould be N(G(N)); for the infinite system it 
becomes infinite for A < 2, is constant for A = 2 and vanishes for A > 2. Our results 
suggestthat analtemativedefinitionof(G(N))mayalso bepossibleviathedimensionless 
ratio ( . S ( N ) ) / ( A ( I V ) ) ~ ,  where the arithmetic mean bandwidth ( S ( N ) )  and the geometric 
mean gapwidth ( A ( N ) ) G  are used. This definition gives a different N-dependence of 
( C ( N ) )  but a finite-size scaling analysis for the averaged conductance naturally arises. 
The log-log plots of ( G ( N ) )  versus N are characterized, from equations (7) and (8), by 
the difference of exponents 6' - 6 for A S 2. In the extended phase (G(N))  increases 
versus N ,  leading eventually to infinite conductance, while in the localized phase it 
decreases and tends to zero. The fixed-point value (at 1. = 2) is constant here 

(C(N)), = (A/B)(e'/fi) = O.l(ez/h) (9) 

while most available data for three-dimensional disordered systems suggest a value of 
( G ( N ) ) ,  = 0.03(e2/h) [lo]. The critical fluctuations around (G(N) )  can also be studied 
in this approach. They are very large, mostly due to the distribution of the gaptvidths 
Ai .  

In order to understand the conductance fluctuations we are now concerned with 
the nearest energy level spacing distribution P(S), which describes first-order density 
correlations. This is the most common spectral fluctuation measure, which is expected 
in the metallic phase of disordered systems to follow the Wigner surmise while in thc 
insulating limit to approach the Poisson distribution [10-12]. Previous results for the 
quasi-periodic model [21-231 have shown that P ( S )  is trivial f o r k  < 2 and it follows the 
expected Poisson law for A > 2. At the critical point they find [2l, 221 an  inverse power- 
law distribution function, P(S) a S-3n, as the nearest level spacings- 0, whichimplies 
a strong clustering of levels. In subsequent attempts [23] a cumulative level spacing 
distribution was computed, and it  was correctly suggested that the spacings between 
adjacent levels had to be multiplied by the density of states, which amounts to the 
removal of the energy scale. This is equivalent to what is known as a deconvolution [29] 
of the spectrum, i.e. scaling it down by a smooth function so that the averaged density 
of states remains constant and is equivalent to studying, instead of the distribution of 
E,- E,_,, the distribution of (N(E,)) X ( N ( E , - , ) )  = ~ ( E ,  - E,-,).dN(E)/dE where 
@"E)) is the averaged integrated density of states at energy E. In order to elucidate the 
question of the critical level statistics we distinguish large and small energy scales by 
separating the distributions of the bandwidths from the gapwidths. In our interpretation 
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1 .5  

( b )  
1 

1 

P IS1 

0 

Figure 3. ( a )  The calculated level spacing distribution iunction at the mobility edge in 
histogram form for Y = 1, A = 2 from the subband width statistics. The horizontal axis is in 
unitsof thelocal mean levelspacing and the full curve is the Wigner-Dyson formula P(S)  = 
S(n/2)  exp(-rSS'/4) 1141 lor theorthogonalensemble, which implies linearlevel repulsion. 
( b )  As in ( a )  but for the insulating regime ( A  = 3). The full curve is the formula P(S) = 
exp( - S )  (Poisson). 

we rely on the fact that for a given N the number of energy levels per sub-band (xl/N) 
is fixed and the correspondingeigenstates should have spacingsS,divided by a constant 
factor in order to retain a constant density of states in every band. Therefore, as it turns 
out, it is sufficient for the level statistics, coming from states in every sub-band, to 
consider only the statistics of bandwidths and P ( S )  can be replaced from the distribution 
of the S,. The result obtained for the normalized critical distribution function P(S) is 
shown in figure 3(a) together with the corresponding Wigner surmise fit. It can be seen 
that the histogram follows, at least approximately, the Wigner-Dyson surmise at the 
mobility edge with P(S)  - S as S-+ 0 being in sharp contrast with the inverse power law 
P(S) a S-3,R obtained in [21,22]. The result of figure 3(a)  can be regarded as evidence 
for the approximate validity of the Wigner-like statistics with the presence of level 
repulsion at the mobility edge. This novel result arises, equivalently, by studying a chain 
of length L much larger than the periodicity N ,  in the limits where both L and N g o  to  
infinity. 

If one instead considers the energy spacings as arising from the statistics of the 
gapwidths, then the level spacing statistics can be easily understood from the support of 
the Cantor set spectrum. This means that the relevant exponent is Do and the power is 
given by 1 + l/Do = 2 + 6 121,221. This result can also be understood by simplifying 
further the three-scale Cantor set of equation (4) discussed previously by replacing a = 
b. Then Do = ln(1/3)/ln a and the number of gaps of width larger than A can be 
approximately shown to obey the scaling Num(A) a A-Do [30]. This is because at the 
nth level of construction a total number of 3" - 1 gaps exists with 2 X 3m-1 gaps of sizes 
A m = am- ' [ ( l  - 3a)/2]So, form = 1 , 2 , .  . . , nand  So being the original band. Then 

n 

Num(A,) = 2 X 3"-' 3 3" 
m= t 

andbyusingA,, = a"-'[(I - 3a)/2]Sowecaneliminatensothat N u m ( A ) a A - t / D o .  Then 
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7 

'. 0 

Figure4. The calculated normalized distribution n(p) for the critical wavefunction amplitude 
p, = ['4,\! at E = 0 for Y = I ,  A = 2. The horizontal axis is in log scale. The wavefunction is 
computrdforlatlicesofsizes:rV= F,=75025,F2,= 121393. FB= 317811,F2i=517Z29, 
Fx = 1346269 and F,,, = 2178309. It demonstrates the validity of an approximate two. 
parameter scaling of the distribution n @ )  for all dinerent length periods N ranging from Fz3 
to 

by differentiating P ( A )  = IdNum(A)/dAI a A-(ltDo) and relying on the assumption 
that the set mimics the critical situation (Do = 1) we obtain P(A) = This is the 
nearest level function P ( S )  according to [21, 221. We see that our results and the 
results of [21,22] can both be understood as arising from the bandwidth and gapwidth 
distributions, respectively. It is clear that at least in one of the cases a deconvolution of 
the spectrum is essential. We also had to distinguish the statistics between small and 
large energyscales. guided by the intermediateThoulessenergyscale Er = (S(N))from 
equation (7). In the former case a smoothing of the density of states within individual 
bands is employed and in the latter case smoothing for the whole of the density of states 
as a whole was required. For the insulating phase in both cases the simple Poisson law 
P(S) = e+suffices as seen in figure 3(b). 

3.2. For tfie waoefunc~~on amplitude 
The wavefunction is a more directly relevant measure of localization properties than the 
spectrum. At a particular level of approximation the system of size N is periodic and we 
may study the square of the wavefunction amplitude at every site as a local probability 
measure pL that repeats indefinitely with period N .  By normalizing it to unity for every 
N 

we can study scaling. In the infinite-N limit the wavefunction amplitude may show 
singularities, which have been previously analysed in terms of generalized multifractal 
dimensionsD,, and corresponding ru-f(n) spectra of exponents. Extended wave functions 
are space filling and in the infinite-N limit 01 = 1 with f = 1. The f(n) spectrum of 
exponents consists only of two points for localized wavefunctions: f = 0 at ru = 0 and f = 
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1 at (Y = 00. The former is due to sites having finitep, obviously of zero measure in the 
infinite-N limit; and the latter to the rest of the sites. The critical wavefunctions are 
characterized by a set of critical exponents converging to a continuous set D,  ranging 
from a,,,,” to am,, and having a non-zero probability density f(a). They are defined from 
the scaling of all the moments 

N N 

p ?  = IY , / ’ ~  = 2 n(p)pq - N ( q - 1 ) D g  (11) 
,=I ,=I P 

where n(p)  is the full probability distribution function of the fluctuating amplitude p .  It 
hasbeen foundthat states at the mobilityedge in three-dimensionaldisorderedelectronic 
systems [19] are also multifractals, at least for the averaged positive moments. In this 
respect the spatial fluctuations of the wavefunction amplitude show similar critical 
behaviour in quasi-periodic and disordered systems. 

Our calculations have been restricted to special energies. For odd N = F, there 
is always an eigenstate with energy F = 0 and we have concentrated mostly on this 
eigenstate, for which the wavefunction can be computed recursively [9]. The most 
prominent scaling exponents for this eigenstate (not to be confused with the exponents 
describing the spectrum) are D,, = 1 and D, = 0.7627, D 2  = 0.6123 and D ,  = 0.3528, 
respectively. D z  is analogous to the correlation fractal dimension D first proposed to 
describe wavefunctions in (311. For the quasi-periodic model at the critical point (A = 
2) it was found that D = 0.80 with error bars of about 15% [32]. Our value of D z  may be 
compared with D and the reasonably close value of 0.82 reported in [a]. 

In order to understand better the nature of critical wavefunctions we choose to plot 
the full distribution function n(p)  for many systems of successive periods N .  This 
distribution is very broad and resembles closely those obtained in disordered systems 
[19]. In figure 4 we display the full n ( p )  distribution function for many different very 
large N values. It can be seen that, if all the data for various N are plotted versus In p by 
subtracting the mean (Inp) and dividing by the corresponding standard deviation 
6 Inp = Inp - (Inp), asingleuniversalscalingf~nction isobtained. Thiscan be approxi- 
mated by a Gaussian for the log, which implies the approximate validity of a two- 
parameter scaling at the mobility edge. We have also attempted to fit the data onto a 
one-parameter scaling curve. By assuming an inherent multiplicative process we may 
approximate n(p)  by a log-normal distribution but with mean a variance In N. Such 
a one-parameter scaling fit does work only very approximately and we find that the 
variance is roughly 1.5 times the mean. However, a fit with at least two or even more 
parameters seems to be necessary to describe scaling of the wavefunction amplitude 
distributions. We cannot numerically distinguish the tailsof the distribution, which must 
be responsible for the anomalous scaling of the higher-order moments. It must be 
pointed out that if one relied on the validity of a Wigner-Dyson theory [14] one might 
have expected that the eigenstates would be chaotic. Accordingly, in the limit of N -  = 
the function n(p)  should become a x’ distribution, i.e. the distribution of a squared 
Gaussian variable [33]. Such chaotic eigenvectors would further imply that Dq = 1 for 
all q. which is clearly not the case for the computed critical wavefunctions. We obviously 
cannot fit n(p)  by a x’ distribution despite the results on the spectral statistics in the 
previous section. Our critical n ( p )  function is much broader than x’. if we note the log 
scale on the x axis of figure 4. 

4. Extended quasi-periodic models 

We have also considered a more general one-dimensional quasi-periodic version of 
equation (2) with v = 2 and 3. This extension was first proposed in [34] and it is believed 
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Figure 5. The energy band structure far various 
strengthSA forthe period N = 89. In the different 
parts A ( E )  are for ( a )  Y = 1. ( b )  Y = 2 and ( c )  

that, as a consequence of the non-linearity of the argument in the cosine in equation (2) 
for v > 1, no mobility edges exist for any A [35].  The behaviour found for this model is 
essentially indistinguishable from that of a random system of the same variance for 
random input numbers. We have applied the same method in the case of v = 2 , 3  and 
our results can be compared with the results obtained for the self-dual model of v = 1. 
In figure 5 the band structure is displayed for the three versions (v = 1,2,3) of equation 
(2) and every A .  It can be seen in the figures that v = 2 . 3  have a different band structure 
from that of v = I .  The trend for the spectrum is to become more point-like as U 
increases. This becomes clearer if we follow every band by increasing N (see also figure 
6 for v = 3). In figure 7 the total bandwidth is plotted versus N for the values v = 1 . 2 ,  
3. Ifextendedstatesexist, accordingtoequation (7) 6 = Oanditshouldreachaconstant 
value for large N .  This can be seen to occur only for U = 1 and A < 2. The corresponding 
behaviour of a true one-dimensional random system with the same variance should not 
differ. 

Therefore, it can be concluded that we may easily devise models that mimic strongly 
disordered systems. It is sufficient just to consider a simple non-linear mapping giving 
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Figure 6. The same as figure 5(c) hut for N = 377. 
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Figure 7. Lug-log plots of the total bandwidth 
B ( N )  = N ( S ( N ) )  versus the period N f o r  various 
quasi-periodicpotential strengths A marked in the 
figures. The different parts are for ( a )  Y = 1. ( b j  
Y = 2 a n d ( c j  Y = 3. 



5512 

rise to a chaotic site potential, which essentially acts as a random site energy. For 
the spectral fluctuations of such models ordinary (Poisson) nearest level statistics are 
expected. The phenomenon is also familiar [36] in quantum models whose classical 
analogue exhibits chaotic behaviour. In this case the common signs of quantum chaotic 
behaviour, such as the Wigner-Dyson statistics, do  not appear due to the presence of 
localization [13]. 

5. Discussion 

There are not many examples where the Anderson transition can be studied without 
innumerable difficulties already present even in the simplest kind of numerical simu- 
lations. A rather tractable model is that of electronic systems in one-dimensional quasi- 
periodic lattices. which is studied in this article. We presented a complete numerical 
study focused on the most interesting questions concerning the energy spectrum and the 
nature of the eigenstates. in connection with the phenomenon of Anderson localization. 
We give numerical evidence supporting an important novel conjecture that the critical 
behaviour for such model systems is close, in some respects, to the diffusive metallic 
phase in random systems. This is verified from our findings of an almost Wigner-Dyson 
statistical description for the critical spectral bandwidth fluctuations. Although the 
quasi-periodic systems do not have a mesoscopic regime, we found that traces exist at 
the critical point. Other properties, such as the gap statistics, are also found to be 
power-law distributed confirming previous studies and our description of the spectral 
fluctuations can be further linked to the conductance fluctuations. 

The properties of the normalized critical wavefunction amplitude distributions are 
also considered by scaling with the system size the moments of the associated probability 
density. This leads to a continuous set of fractal exponents D, and m-f(w) spectra. 
Attention is focused againon the corresponding criticaldistributions. which are approxi- 
mately described by a single limiting scaling function. On the other hand we find no 
obvious differences in the asymptotic limit between localized states in quasi-periodic 
and disordered chains. This is confirmed by studying models with pseudo-random 
potentials which display only localized states due to loss of the quasi-periodicity because 
of non-linearity. 

In summary, our study, in connection with previous works, answers the questions 
(i) and (ii) of the introduction. Referring to question (iii) we have given here further 
evidence that the Anderson transition studied in these simple models shows a lot of 
similarities with the corresponding transition in disordered systems, both for the aver- 
aged values and the fluctuations of the quantities of interest. This suggests that the 
models can be used as a laboratory for studying the real transition. Our results also point 
towards a connection of experimental significance between these models, mesoscopic 
systems and quantum dynamics in classically chaotic systems. The key feature in our 
work is the presence of the complicated scaling of the moments at the transition. We 
showed that the distributions themselves can be understood too and it remains a future 
question to see the critical conductance distribution by the Kubo formula [15]. Recent 
considerations [37-391 relate the multifractal critical phenomena to field theories with 
highpowersof gradients in appropriate non-linear omodels, a subject of current debate. 
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